Undercover farming: Assessment of cover crop and integrated weed management for Georgia row-crops

H. C. Lindell, M. C. Bocz, T. L. Grey, E. P. Prostko, A. S. Culpepper, F. Meeks, N. T. Basinger

Living Mulch Affect on Palmer Amaranth Attributes in Cotton

• Cereal Grain Covercrop in Peanuts

Cover crop and living mulch systems with herbicide on Palmer Amaranth (Amaranthus palmeri S. Wats.) population dynamics

Cotton and Cover Crops

"Herbicides provide great control **But...** Herbicide reliance in herbicide resistance to multiple mechanisms of action"

- Palmer amaranth is currently resistant to 5 MOA
- Cover crops
 - alter soil environment + decrease light to soil surface
 - Physical barrier + weed suppression
 - Reduce exposure to herbicide (Wiggins et al. 2017, Hand et al. 2021)
 - Herbicide more effective (*Wallace et al. 2019*)
- Low overall adoption <15%

Example of living mulch between cotton strips

- Annual: terminated before cash crop
- Perennial (living mulch): grows synchronously with cash crop
 - Nitrogen release; cost saver (Hill et al. 2017)
 - Potential tradeoffs

Materials and Methods

- Watkinsville, GA: 2020, 2021, 2022, 2023
- Cover crops and living mulch (two annuals, one perennial, & bare ground):
 - Cereal rye (Secale cereale L.) at 100 lb ac
 - Crimson clover (*Trifolium incarnatum* L.) at 20 lb ac
 - White clover (*Trifolium repens* L. 'Durana[®]') at 20 lb ac –
 - Bare ground
- DG 3615 Cotton (38,000 seed/acre)
 - Irrigated based on UGA check book method (Porter, 2021)
- Plots 36 ft by 54 ft
- Randomized complete block design

- annuals

— perennial

12 cotton rows: 4 harvested for yield, 4 used in Palmer amaranth subplots

- No previous Palmer amaranth population
- Watksir
- Cover c ground

• Cere

- (2020) 25,000 seed m⁻² (Palmer amaranth) placed in 9 m⁻² subplots
- 20 soil cores (annually) for seed bank density
- Crin Seeds collected from end-of-season added back to each plot
- White cre
- Bare ground
- DG 3615 Cottor
 - Irrigated bas
- Randomized co

LM

BG

CC

Herbicide Management

nvironmental Sciences NIVERSITY OF GEORGIA

- Burndown application for CR, CC, and BG
- Strip width spray of 20 cm for LM
- Herbicide management based on seedling emergence
- NO residuals

Herbicide	Rate	WAP	
		2022	2023
glufosinate- ammonium	32 oz/ac	3	3
glufosinate- ammonium	32 oz/ac	7	7
glyphosate + carfentrazone-ethyl	32 oz/ac and 2 oz/ac	11	NA

Seedbank

Cover crop	Germinated seedlings m ⁻²						
	2020	2021	2022	2023			
BG	3229a	3846a	5152a	1380b			
СС	3796a	5424a	8407a	4191b			
CR	3871a	2194a	4783a	1208b			
LM	2416a	3525a	3550a	12475a			

Palmer Amaranth: EOS Number of plants

Environmental Sciences UNIVERSITY OF GEORGIA

Palmer Amaranth: EOS Biomass

Environmental Sciences UNIVERSITY OF GEORGIA

2022 Plots

Living mulch + strip width application

Cereal rye + broadcast application

Cotton Yield

No significant difference between cover crop treatments

Take Home

- Without herbicides, cereal rye and living mulch effectively reduced palmer amaranth plant number
- Herbicides with covercrops reduced palmer amaranth plant number and biomass in cereal rye, crimson clover, and bare ground scenarios
- Covercrop did not affect cotton yield for years 1, 2, 3, and 4

Evaluating planting arrangement, herbicide persistence, and weed management using cereal rye cover crop in Georgia peanut

Peanuts and Cover Crops

- Georgia makes up >52% peanut production
- 11 recorded cases of herbicide resistant weeds in Georgia (*Heap 2023*)
- Cover crops affect herbicide efficacy, alter weed control, and create a risk for peanut injury from carryover (*Perkins 2020*)
- Evaluations of the potential risk/benefits of cover crops in peanut production is crucial

Materials and Methods

- Trial locations for:
 - 2023: 🛧 Midville and 🛧 Tifton, GA
- Variety: Georgia-06G
 - High yielding and TSWV resistant runner cultivar
 - Plot size 12 ft by 30 ft
- Seeds planted at 88,000 seeds acre⁻¹

viaterials and iviethods	Table 1. Proposed treatment structure.						
	Cover crop	Planting	PRE	POST			
		Single	None	None			
50 lbs/A 100% cereal rye drilled			Paraquat+Prowl+	Cadre			
in Tifton (27 082 lb/ 20			Valor+Strongarm	+Warrant+2,4DB			
			Paraquat+Prowl+	Cadre			
biomass), and a cereal grain mix	No Cover crop		Strongarm+Brake	+Warrant+2,4DB			
$\frac{1}{200}$, $\frac{1}{200}$, $\frac{1}{200}$, $\frac{1}{200}$			None	None			
(70% cereal rye; 20% oat; 10%			Paraquat+Prowl+	Cadre			
wheat) broadcast at 70 lb/A in		Twin	Valor+Strongarm	+Warrant+2,4DB			
NA: duille (102 105 lb /ee			Paraquat+Prowl+	Cadre			
ivilaville (103,195 lb/ac			Strongarm+Brake	+Warrant+2,4DB			
biomass)			None	None			
			Paraquat+Prowl+	Cadre			
• Midville planted E/Q. DDFa		Single	Valor+Strongarm	+Warrant+2,4DB			
			Paraquat+Prowl+	Cadre			
• IVIIUVIIIE planteu 5/6; PRES	Coreal Grain		Strongarm+Brake	+Warrant+2,4DB			
applied 5/9; POSTs applied 6/6		Twin	None	None			
			Paraquat+Prowl+	Cadre			
• <u>litton</u> planted 5/8; PRES			Valor+Strongarm	+Warrant+2,4DB			
applied 5/9; POSTs applied 6/8			Paraquat+Prowl+	Cadre			
			Strongarm+Brake	+Warrant+2,4DB			

Weed Biomass: Herbicide Effect

College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

Nontreated

Strongarm @ 0.225 oz/a + Valor SX @ 3 oz/a + <u>Gramoxone 3SL @ 20.8 oz/a + Prowl 32 oz/a</u> Strongarm @ 0.225 oz/a + Brake @ 12 oz/a Gramoxone 3SL @ 20.8 oz/a + Prowl 32 oz/a

Midville 6/26/2023 – 7 WAP/WAT

Tifton, GA – August 10 12 WAP

Single-row + nontreated

Twin-row + nontreated

Weed biomass at the end of the season is 68% higher in single-row peanuts compared to twin-row

NT = nontreated

SB = Strongarm @ 0.225 oz/a + Brake @ 12 oz/a

VS = Strongarm @ 0.225 oz/a + Valor SX @ 3 oz/a

Yield was not affected by planting arrangement

Take Home

- Multiple tank mix herbicides reduce weed biomass compared to nontreated, regardless of cover crop or planting arrangement
- At Midville, where late emerging weeds occurred, herbicide use increased peanut yield
- Twin-row reduced biomass from early emerging weeds at Tifton, GA by 68%
- Yield was affected by herbicide and covercrop at Tifton

Acknowledgments

- Research was funded by:
 - Cotton Incorporated
 - Georgia Peanut Commission
- UGA Research Stations :
 - Jones Farm
 - Southeast Georgia Research and Education Center (SEGREC)
 - J. Phil Campbell Research and Education Center (JPCREC)

- Agricultural Specialists:
 - Chris Bocz, John D. Hale, Sidney Cromer,

and Ray Boyd

• Undergraduate help

College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

Thank you for listening

For any further questions, please contact me at <u>hcl00025@uga.edu</u>

